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ABSTRACT

In characterizing interacting discontinuities in

waveguide increasing use is made of the so called

generalized scattering matrix (GSM) formalism in

order to describe ‘accessible modes’ below cutoff.

This is motivated by the intrinsic numerical sta-

bility of the scattering matrix with respect to the

transmission matrix, for istance. Unfortunately,

we found that in many recent works and textbooks

the GSM of a length of waveguide involving a mode

above cutoff and several ones below cutoff is de-

fined so that unitarity of the matrix and hence

power conservation is not preserved.

Still, numerical values of the fundamental mode

scattering parameters reported as examples by the

same references appear to be correct.

In solving this apparent paradox, we address the

problem of correctly defining the GSM for loss-

less modes below cutoff and alert the reader to

the drawbacks of using a definition that does not

maintain unitarity.

INTRODUCTION

Modern analysis of microwave components with

the help of powerful computers makes massive use

of the computation of the generalised scattering

matrices of discontinuities interacting via several

modes of which the fundamental is normally in

propagation while the rest is below cutoff but still

causing interaction with adj scent discontinuities

(accessible modes [1]).

A fundamental building block of the GSM analy-

sis consists of the GSM of a length of waveguide

interconnecting two successive discontinuities.

From circuit point of view this is equivalent to a

set of parallel uncoupled transmission lines where
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the line corresponding to the fundamental mode

has real characteristic impedance 20 and propaga-

tion constant /3, whereas the remaining lines have

pure imaginary characteristic impedance -jXo and

real attenuation factor a.

As will be shown in the following, the form of the

scattering matrix of a line below cutoff that is often

currently assumed in literature is defined in such

a manner that it does not satisfy the condition of

unitarity as is imposed by power conservation (see

[2], [3], [4], [5] among many others).

We will consider the problem of correctly defin-

ing the scattering matrix and present a solution

that is seen to satisfy all physical requirements.

THE CURRENT DEFINITION OF S

MATRIX OF A LENGTH OF
WAVE GUIDE

The form of the scattering matrix of a length of

waveguide is often taken as

[

o ~–jpl

1
for a propagating mode (1)~–j~l ()

10 ~–al

~–al o 1
for a non propagating mode

L J

(2)

Where ~ is the propagation constant of the mode

above cutoff and a the attenuation of the mode

below cutoff. Since there is no physical definition

based on wave amplitude of the scattering matrix

of a mode below cutoff, (2) is arrived at by set-

ting a = –j,B in (1). Since both forms portray to

represent the SM of a lossless circuit the unitary

condition S+ S = I ought to be satisfied. It is easy

to check however that only the first form for real
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@ satisfies unitarity whilst the second one gives

[

~–2ffl ()

S+s = ~ ~–2cd
1

(3)

which is obviously not the unit matrix.

APPROPRIATE DEFINITION OF THE
GSM

Going back to the principles of network theory,

we find that the scattering matrix is formally de-

fined for any n-port network as [6], [7]

S = (Z– I)(Z+I)-l = (Z+ I)-l(Z–l) (4)

Where the adimensional impedance matrix Z is

supposed to exist, or, alternatively, if the normal-

ized admittance matrix Y exists:

S=(I– Y)-l(I+Y) (5)

S links the wave amplitudes a, b in such a way

that

b=Sa (6)

a and b are defined in term of” appropriately nor-

malized” volt ages and currents as:

a=~(v+i) (7)

b=~(v–i) (8)

where the normalized quantities v and i are re-

lated by v = Zi. It is very easy to check that

definition (4) satisfies unitarity. For, if the net-

work is reciprocal and Iossless, Z = —Z+ so that

by substituting (4) in the unitarity condition, we

obtain

S+S = (Z+ +l)-l(Z+ – I)(Z – I)(Z +1)-1 =

= (Z-l) -’(Z +I)(Z-I)(Z+ I)-’ =

because of commutativity

= (Z-l) -’(Z +I)(Z+I)-’(l)I) =1

(9)

Let us consider how the above definition applies

to the case of a line below cutoff of characteristic

impedance jXo with real X. and attenuation ~ =

Od.

Starting from the well known form of the Z-matrix

of this line,

z = –jxo
[

coth { 1/ sinh ~

1/ sinh ~ coth ~
1

(lo)

Upon application of (4) we obtain

[

2jxo

1
-(1+X;) —

s= sinh ~

1 – X; + 2jXo coth ~ 2jxo
—t -(1 + xi)
sinh <

(11)

We note that:

1. This matrix is unitary ;

2. The S1l and S22 parameters are different from

zero, compatibly with the fact that a line be-

low cutoff reflects power;

3. As (’ tends to infinity, S1l and Szz tend to 1

whereas S12 tends to zero;

4. As & tends to zero, S1l and S22 tend to O

whereas S12 tends to 1;

5. in the limiting case of a mode above cutoff

X. = –j, f = j~l and the standard form (1)

is recovered.

Let us now consider the question of normalization

in the multimodal case.

In the multiple line case the normalized voltages

and currents are normally defined as

z (av = R–1/2v’ = : + b) (12)

i = R+l/21= ~(a–b) (13)

Where V and I are the actual unnormalized volt-

ages and currents and the diagonal dimensional

matrix R is to be chosen as real for power to

be conserved. In fact, if R is not real, then

v+ . i = V+(R+)–1/2 . R1/21 so that Re{v+ . i}

# Re{V+ . I } and power is not conserved.

The often encountered definition l?~k = Re{Zo~}

clearly fails in the case we are considering, .zk be-

ing pure imaginary for a mode below cutoff.

It is noted that where (2) is used, the normaliza-

tion is usually carried out with respect to an imagi-

nary impedance jXo, contrary to the principle just

illustrated. In practice, however, only the block of

the S-matrix corresponding to propagating modes
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is retained in computing the input-output quan-

tities and this conceptually incorrect normaliza-

tion works out in such a way that the final result

is still correct. In the latter, however, the use-

ful check based on the unitarity of the GSM has

been lost. In our definition instead is expedient to

carry out the impedance normalization by assum-

ing .& = IZo~ [. Consequently, the normalized

current impedance of all lines below cutoff results

to be sign(Xo) j, while that of the lines above cut-

off is 1, according to standard convention. In that

case the 2 x 2 block corresponding to a line takes

the form

dl =
[

o ~–jol

~–jol () I (14)

for the fundamental mode.

Therefore ,the reduction of the GSM to the ordi-

nary 2na x 2na scattering matrix s, where na is

the number of modes above cutoff, takes place by

using the standard port reduction formula

s = Saa – Sa~(J – S~~)–lS~a (17)

Where J iS a (2nb X 2nb) diagonal matrix, nb being

the number of accessible modes below cutoff, whose

k-th element is given by:

[JIM= [J]~+~b,~+~b= j sign(xo~)k = 1,nb (B)

block S.b relates accessible modes of type ‘a’,

above cutoff, to those of type ‘b’, below cutoff.

Although the proposed definition of GSM is a lit-

tle more time consuming with respect to the stan-

dard one, as it requires reduction, nonetheless it

provides a useful criterium for checking algebraic

implement at ion through its unit arit y.

dk =
[

,j.$ign(XOk) tanh ‘$k 1/ cosh (k

1/ cosh ~k ~sign(xok) tanh ~k 1 USEFULNESS OF THE NEW

k = 2,3.. (15) DEFINITION OF GSM

for modes below cutoff.

The overall GSM of a length of waveguide with a

single propagating mode takes the form:

s=::

‘[] 1

dl O . . . 0
(16)

where D = O d2 . . . 0

0 0 . . . dN

Of course, the above normalization applies to

the GSM of any linear device characterized by an

impedance matrix Z.

CLOSURE OF THE S MATRIX AT THE

INPUT AND OUTPUT PORT

Since the input and output ports of the device

are considered to be terminated by infinite lengths

of waveguide, all ports corresponding to higher or-

der modes have to be closed on their character-

istic impedance, that is j sign(xok ) according to

the normalization assumed in (16).

As previously observed, the main advantage of

the new definition of the GSM is its unitarity, since

the latter constitutes a significant test for checking

the correctness of the numerical results. On the

contrary, when using the standard definition one

can check only the unitarity of the block relating

modes above cutoff, losing all information on the

blocks involving accessible modes below cutoff. A

simple example can illustrate a situation where the

unitarity of the GSM permits to uncover an error

otherwise hard to detect.

Let us consider the waveguide Y-junction (H-

plane) shown in fig.1. Be S~~ the transmission

between the n-th mode of the I-th port and the m-

th mode of the J-th port. If the n-th and the m-th

modes have the same parity, then S~~ = S~~,

otherwise S~ln = —S~ln. Now, suppose to make

the trivial, but very insidious mistake, consisting

of setting S~~ = S~~, V n, m. It is immediate

to observe that the block of the GSM relative to

modes above cutoff, as normally defined, contin-

ues to satisfy unitarity. Therefore an inspection

of that property fails to detect the error. On the

contrary, by checking the unitarity of the GSM
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as correctly defined, the mistake emerges immedi-

ately. This is just one of many simple and realistic

examples showing the usefulness of the correct def-

inition of the GSM.

CONCLUSIONS

In dealing with higher order mode interaction

between successive discontinuities it is important

to properly define the GSM.

We give a correct definition of the GSM and show

its usefulness by considering an example where

unitarity permits to uncover an error that could

possibly occurr from an incorrect implementation

of the GSM of a Y-junction.
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