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ABSTRACT

In characterizing interacting discontinuities in
waveguide increasing use is made of the so called
generalized scattering matrix (GSM) formalism in
order to describe 'accessible modes’ below cutoff.
This is motivated by the intrinsic numerical sta-
bility of the scattering matrix with respect to the
transmission matrix, for istance. Unfortunately,
we found that in many recent works and textbooks
the GSM of a length of waveguide involving a mode
above cutoff and several ones below cutoff is de-
fined so that unitarity of the matrix and hence
power conservation is not preserved.

Still, numerical values of the fundamental mode
scattering parameters reported as examples by the
same references appear to be correct.

In solving this apparent paradox, we address the
problem of correctly defining the GSM for loss-
less modes below cutoff and alert the reader to
the drawbacks of using a definition that does not
maintain unitarity.

INTRODUCTION

Modern analysis of microwave components with
the help of powerful computers makes massive use
of the computation of the generalised scattering
matrices of discontinuities interacting via several
modes of which the fundamental is normally in
propagation while the rest is below cutoff but still
causing interaction with adjacent discontinuities
(accessible modes [1]).

A fundamental building block of the GSM analy-
sis consists of the GSM of a length of waveguide
interconnecting two successive discontinuities.

From circuit point of view this is equivalent to a
set of parallel uncoupled transmission lines where
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the line corresponding to the fundamental mode
has real characteristic impedance Zy and propaga-
tion constant [, whereas the remaining lines have
pure imaginary characteristic impedance j Xy and
real attenuation factor «.

As will be shown in the following, the form of the
scattering matrix of a line below cutoff that is often
currently assumed in literature is defined in such
a manner that it does not satisfy the condition of
unitarity as is imposed by power conservation (see
2], [3], [4], [5] among many others).

We will consider the problem of correctly defin-
ing the scattering matrix and present a solution
that is seen to satisfy all physical requirements.

THE CURRENT DEFINITION OF S
MATRIX OF A LENGTH OF
WAVEGUIDE

The form of the scattering matrix of a length of
waveguide is often taken as

[0 Ll .
T T for a propagating mode (1)

0 e
L e_al 0

—al
] for a non propagating mode

(2)

Where [ is the propagation constant of the mode
above cutoff and « the attenuation of the mode
below cutoff. Since there is no physical definition
based on wave amplitude of the scattering matrix
of a mode below cutoff, (2) is arrived at by set-
ting @ = —j8 in (1). Since both forms portray to
represent the SM of a lossless circuit the unitary
condition STS = I ought to be satisfied. It is easy
to check however that only the first form for real
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[ satisfies unitarity whilst the second one gives

e-—2al 0
S*ts = l: 0 e—20l } (3)

which is obviously not the unit matrix.

APPROPRIATE DEFINITION OF THE
GSM

Going back to the principles of network theory,
we find that the scattering matrix is formally de-
fined for any n-port network as [6], [7]

S=Z-DHZ+D)'=(Z+D)Z-T) 4

Where the adimensional impedance matrix Z is
supposed to exist, or, alternatively, if the normal-
ized admittance matrix Y exists:

S=1-Y)}(I1+Y) (5)

S links the wave amplitudes a, b in such a way
that

b = Sa (6)

a and b are defined in term of ” appropriately nor-
malized” voltages and currents as:

1 .
a=?w+ﬂ (7)
b=o(v—1i) (8)

where the normalized quantities v and i are re-
lated by v = Zi. It is very easy to check that
definition (4) satisfies unitarity. For, if the net-
work is reciprocal and lossless, Z = —Z7% so that
by substituting (4) in the unitarity condition, we
obtain

StTS=(Zt+ D)"Y Zt -D(Z-D(Z+I) 1 =

=(Z-I)Y Z+T(Z-TN(Z+T) 1=

because of commutativity

=(Z-D"YZ+DEZ+D) 1 (Z-T)=1I

(9)

Let us consider how the above definition applies
to the case of a line below cutoff of characteristic
impedance j X with real Xy and attenuation £ =
al.

Starting from the well known form of the Z-matrix
of this line,

cothé 1/sinhé

Z==3X0| 1 /ginhé  cothé (10)
Upon application of (4) we obtain
2 Xo
_ 2

S = 1 S.;X‘)) sinh £
1— X2 +2jXgcoth& J 30 _ 2
smhgs 1+ Xo)

(11)

We note that:

1. This matrix is unitary ;

2. The S11 and S22 parameters are different from
zero, compatibly with the fact that a line be-
low cutoff reflects power;

3. As £ tends to infinity, S1; and Sas tend to 1
whereas 512 tends to zero;

4. As £ tends to zero, Si; and Soo tend to O
whereas Sio tends to 1;

5. in the limiting case of a mode above cutoff
Xo = —j7, & = jpBl and the standard form (1)
is recovered.

Let us now consider the question of normalization
in the multimodal case.

In the multiple line case the normalized voltages
and currents are normally defined as

v=R"2V = %(a +b) (12)
i=Rt/21= %(a —~b) (13)

Where V and I are the actual unnormalized volt-
ages and currents and the diagonal dimensional
matrix R is to be chosen as real for power to
be conserved. In fact, if R is not real, then
vt i = VHR*Y)"/2. RY2I so that Re{v' - i}
# Re{V™ -1} and power is not conserved.

The often encountered definition Rygr = Re{Zox}
clearly fails in the case we are considering, Zy be-
ing pure imaginary for a mode below cutoff.

It is noted that where (2) is used, the normaliza-
tion is usually carried out with respect to an imagi-
nary impedance j Xg, contrary to the principle just
illustrated. In practice, however, only the block of
the S-matrix corresponding to propagating modes
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is retained in computing the input-output quan-
tities and this conceptually incorrect normaliza-
tion works out in such a way that the final result
is still correct. In the latter, however, the use-
ful check based on the unitarity of the GSM has
been lost. In our definition instead is expedient to
carry out the impedance normalization by assum-
ing Ry = |Zog|. Consequently, the normalized
current impedance of all lines below cutoff results
to be sign(Xo) j, while that of the lines above cut-
off is 1, according to standard convention. In that
case the 2 x 2 block corresponding to a line takes
the form

0 eIl
d; = [ T ] (14)

for the fundamental mode.

de = gsign{Xox) tanh & 1/ cosh &
ko= 1/ cosh & jsign(Xog) tanh &
ko= 2,3. (15)

for modes below cutoff.
The overall GSM of a length of waveguide with a
single propagating mode takes the form:

0 D
d 0 ... O
16
whereD=| 0 dy ... O (16)
0 0 ... dy

Of course, the above normalization applies to
the GSM of any linear device characterized by an
impedance matrix Z.

CLOSURE OF THE S MATRIX AT THE
INPUT AND OUTPUT PORT

Since the input and output ports of the device
are considered to be terminated by infinite lengths
of waveguide, all ports corresponding to higher or-
der modes have to be closed on their character-
istic impedance, that is j sign(Xox) according to
the normalization assumed in (16).

Therefore ,the reduction of the GSM to the ordi-
nary 2n, X 2n, scattering matrix s, where n, is
the number of modes above cutoff, takes place by
using the standard port reduction formula

s =S4, — Sab(J - Sbb)—lsba (17)

Where J is a (2n; x 2n;) diagonal matrix, n; being
the number of accessible modes below cutoff, whose
k-th element is given by:

Txk = [Tktnp btny = 7 s1gn(Xog) k= 1,15 (18)

block Sg, relates accessible modes of type ’a’,
above cutoff, to those of type 'b’, below cutoff.
Although the proposed definition of GSM is a lit-
tle more time consuming with respect to the stan-
dard one, as it requires reduction, nonetheless it
provides a useful criterium for checking algebraic
implementation through its unitarity.

USEFULNESS OF THE NEW
DEFINITION OF GSM

As previously observed, the main advantage of
the new definition of the GSM is its unitarity, since
the latter constitutes a significant test for checking
the correctness of the numerical results. On the
contrary, when using the standard definition one
can check only the unitarity of the block relating
modes above cutoff, losing all information on the
blocks involving accessible modes below cutoff. A
simple example can illustrate a situation where the
unitarity of the GSM permits to uncover an error
otherwise hard to detect.

Let us consider the waveguide Y-junction (H-
plane) shown in fig.1. Be S.J the transmission
between the n-th mode of the I-th port and the m-
th mode of the J-th port. If the n-th and the m-th

modes have the same parity, then S2L = S3l
otherwise S21, = —S3! . Now, suppose to make

the trivial, but very insidious mistake, consisting
of setting S2L = S3L ' Vn m. It is immediate
to observe that the block of the GSM relative to
modes above cutoff, as normally defined, contin-
ues to satisfy unitarity. Therefore an inspection
of that property fails to detect the error. On the
contrary, by checking the unitarity of the GSM
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as correctly defined, the mistake emerges immedi-
ately. This is just one of many simple and realistic
examples showing the usefulness of the correct def-
inition of the GSM.

CONCLUSIONS

In dealing with higher order mode interaction
between successive discontinuities it is important
to properly define the GSM.

We give a correct definition of the GSM and show
its usefulness by considering an example where
unitarity permits to uncover an error that could

possibly occurr from an incorrect implementation
of the GSM of a Y-junction.

1 H-Plane

Fig. 1. H-plane section of the Y-junction consid-
ered in the example
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